n^5-5*5^3+4*n=(n^5-n^3)-(4n^3-4n)=n^3(n^2-1)-4n(n^2-1)=(n^3-4n)(n^2-1)=n(n^2-4)(n^2-1)=(n-2)(n-1)n(n+1)(n+2)
vì(n-2)(n-1)n(n+1)(n+2)là tích 5 số nguyên liên tiếp nên chia hết cho 3 và 5
Mà (3;5)=1=>(n-2)(n-1)n(n+1)(n+2) chia hết cho 15
vì trong năm số nguyên liên tiếp thì có ít nhất một số chia hết cho 2 và một số chia hết cho 4
=>(n-2)(n-1)n(n+1)(n+2) chia hết cho 8
Mà (8;15)=120
=> (n-2)(n-1)n(n+1)(n+2) chia hết cho 120
hay n^5-5*n^3+4*n