chứng minh với a,b\(\ge0\)
thì: \(\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2\)
CM \(\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2\) Với \(a,b\ge0\)
CMR \(\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2\Leftrightarrow a,b\ge0\)
Rút gọn biểu thức
a) \(\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\left(\sqrt{a+\sqrt{b}}\right)^2-4\sqrt{ab}}.\dfrac{a-b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\) \(\left(đkxđ:a\ne b;a\ge0;b\ge0\right)\)
b) \(\dfrac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\dfrac{a-b}{\left(\sqrt{a}+\sqrt{b}\right)^2}\)\(\left(đkxđ:a\ne b;a\ge0;b\ge0\right)\)
HELP ME PLSSSSSSSSSS
Chứng minh giúp mình mấy câu bất đẳng thức này nha
a) \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\left(a,b>0\right)\)
b) \(\left(\sqrt{a}+\sqrt{b}\right)^8\ge64ab\left(a+b\right)^2\left(a,b>0\right)\)
c) \(y\left(\frac{1}{x}+\frac{1}{x}\right)+\frac{1}{y}\left(x+z\right)\le\left(\frac{1}{x}+\frac{1}{z}\right)\left(x+z\right)\left(0< x\le y\le z\right)\)
d) \(a+b+c\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a,b,c>0;a+b+c=abc\right)\)
Ta có \(\sqrt{a+b}+\sqrt{a-b}\le2\sqrt{a}\)
\(\Leftrightarrow\left(\sqrt{a+b}+\sqrt{a-b}\right)^2\le\left(2\sqrt{a}\right)^2\)\(\Leftrightarrow a+b+a-b+2.\sqrt{\left(a+b\right)\left(a-b\right)}\le4a\)
\(\Leftrightarrow2a+2\sqrt{\left(a+b\right)\left(a-b\right)}\le4a\)
\(\Leftrightarrow-2a+2.\sqrt{\left(a+b\right)\left(a-b\right)}\le0\)\(\Leftrightarrow-\left(2a-2.\sqrt{\left(a+b\right).\left(a-b\right)}\right)\le0\)
\(\Leftrightarrow a+b+a-b-2.\sqrt{\left(a+b\right)\left(a-b\right)}\ge0\)
\(\Leftrightarrow\left(\sqrt{a+b}-\sqrt{a-b}\right)^2\ge0\)( luôn đúng nên suy ra điều phải chứng minh )
rút gọn các biểu thức sau
a) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{7+4\sqrt{3}}\)
b) \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)với \(a\ge0;b\ge0;a\ne b\)
a)\(3\sqrt{40\sqrt{12}}+4\sqrt{\sqrt{75}}-5\)\(\sqrt{5\sqrt{48}}\)
b)\(\sqrt{8\sqrt{3}}+3\sqrt{20\sqrt{3}}-2\sqrt{45\sqrt{3}}\)
c)\(\left(\sqrt{x}-1\right).\left(x+\sqrt{x}+1\right)\left(x\ge0;y\ge0\right)\)
d)\(\left(\sqrt{x}+1\right)\left(x+1-\sqrt{x}\right)\left(x\ge0;y\ge0\right)\)
e)\(\left(\sqrt{x}+y\right)\left(x+y^2-y\sqrt{2}\right)\left(x\ge0;y\ge0\right)\)
Cho B=\(\left(\frac{a\sqrt{a}-3}{a-2\sqrt{a}-3}-\frac{2\left(\sqrt{a}-3\right)}{\sqrt{a}+1}+\frac{\sqrt{a}+3}{3-\sqrt{a}}\right):\left(\frac{a+8}{a-1}\right)\)
Rút gọn A với a\(\ge0;a\ne9;a\ne1\)