Xét \(\frac{f\left(x_2\right)-f\left(x_1\right)}{x_2-x_1}=\frac{x_2^3-x_1^3}{x_2-x_1}=\frac{\left(x_2-x_1\right)\left(x_2^2+x_1x_2+x_1^2\right)}{x_2-x_1}=x_1^2+x_1x_2+x_2^2=\left(x_1^2+x_1x_2+\frac{x_2^2}{4}\right)+\frac{3x_2^2}{4}\)
\(=\left(x_1+\frac{x_2}{2}\right)^2+\frac{3x_2^2}{4}>0\)
Do vậy hàm số luôn đồng biến.
Với x1 > x2 thì f(x1) - f(x2)
= x13 - x23 = (x1 - x2)(x12 + x1 x2 + x22) = (x1 - x2)[(x12 + x1 x2 + x22/4) + 3x22 ) = (x1 - x2)[x1 + x2/2)2 + 3x22/4) > 0
Vậy hàm số đồng biến