Giải phương trình:
a) \(\frac{\sqrt{x-2005}-1}{x-2005}+\frac{\sqrt{y-2006}-1}{y-2006}+\frac{\sqrt{z-2007}-1}{z-2007}=\frac{3}{7}\)
b) \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
tinha tổng
\(\frac{1}{2\sqrt{1}+1\sqrt{2}}\)+\(\frac{1}{3\sqrt{2}+2\sqrt{3}}\)......+\(\frac{1}{2006\sqrt{2005}+2005\sqrt{2006}}\)
Tính
\(A=\sqrt{1+2005+\left(\frac{2005}{2006}\right)^2}+\frac{2005}{2006}\)
Các bạn giải hộ mình nhé ^_^
Tính
\(A=\sqrt{1+2005+\left(\frac{2005}{2006}\right)^2}+\frac{2005}{2006}\)
Các bạn giải hộ mình nhé ^_^
Chứng tỏ rằng
\(\frac{2}{3\left(1+\sqrt{2}\right)}+\frac{2}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{2}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{2}{4011\left(\sqrt{2005}+\sqrt{2006}\right)}<1-\frac{1}{\sqrt{2006}}\)
Chứng tỏ rằng
\(\frac{2}{3\left(1+\sqrt{2}\right)}+\frac{2}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{2}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{2}{4011\left(\sqrt{2005}+\sqrt{2006}\right)}<1-\frac{1}{\sqrt{2006}}\)
chứng tỏ rằng :
\(\frac{2}{3\left(1+\sqrt{2}\right)}+\frac{2}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{2}{7\left(\sqrt{3}+\sqrt{4}\right)}+...\frac{2}{4011\left(\sqrt{2005}+\sqrt{2006}\right)}
Tính tổng
S= \(\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{2005}+\sqrt{2006}}\)
so sánh
a\(\sqrt{1999}+\sqrt{2001}\) Và \(2\sqrt{2000}\)
b \(\frac{2006}{\sqrt{2005}}+\frac{2005}{\sqrt{2006}}\)Và \(\sqrt{2005+\sqrt{2006}}\)