Ta có : \(1+5+5^2+...+5^{2012}\)
Đặt : \(A=1+5+5^2+...+5^{2012}\)
\(\Rightarrow5A=5+5^2+5^3+...+5^{2013}\)
\(\Rightarrow5A-A=\left(5+5^2+...+5^{2013}\right)-\left(1+5+...+5^{2012}\right)\)
\(\Rightarrow4A=5^{2013}-1\)( Trừ vế theo vế )
\(\Rightarrow A=\frac{5^{2013}-1}{4}\left(đpcm\right)\)
Đặt \(A=1+5+5^2+...+5^{2012}\)
Ta có : \(5A=5+5^2+5^3+...+5^{2013}\)
\(\Rightarrow5A-A=\left(5+5^2+5^3+...+5^{2013}\right)-\left(1+5+5^2+...+5^{2012}\right)\)
\(\Rightarrow4A=5^{2013}-1\Rightarrow A=\frac{5^{2013}-1}{4}\RightarrowĐPCM\)
Đặt \(VT=A=1+5+5^2+......+5^{2012}\)
\(\Rightarrow5A=5+5^2+5^3+.....+5^{2013}\)
\(\Rightarrow5A-A=\left(5+5^2+5^3+....+5^{2013}\right)-\left(1+5+5^2+....+5^{2012}\right)\)
\(\Rightarrow4A=5^{2013}-1\)
\(\Rightarrow A=\frac{5^{2013}-1}{4}=VT\)
Vậy đẳng thức được chứng minh