\(\left(cota+tana\right)^2-\left(cota-tana\right)^2\)
\(=cot^2a+2+tan^2a-\left(cot^2a-2+tan^2a\right)\)
\(=2+2=4\)
Bạn chép sai đề rồi
\(\left(cota+tana\right)^2-\left(cota-tana\right)^2\)
\(=cot^2a+2+tan^2a-\left(cot^2a-2+tan^2a\right)\)
\(=2+2=4\)
Bạn chép sai đề rồi
Mọi người giúp em giải câu này với :Chứng minh rằng (Tan2x/1+tan2x)(1+cot2x/cotx)=1+tan4x/tan2x+cot2x
Chứng minh :
a) ( tan2x - tanx )cos 2x = tan x
b) 2(1-sinx)(1+cosx) = (1-sinx+cosx)2
c) 1 + cotx + cot2x + cot3x = cosx+sinx / sin3x
d) cos3x/sinx + sin3x/cosx = 2cot2x
Tính:
a) P=\(\dfrac{√3.(tan 30°) - cos 60°.cot 30° - 2√2.(sin 45°)}{√6.sin 90°.cos45°.sin 60°}\)
Chứng minh :
(1 + tan x)cos2x + (1 + cot x)sin2x = (sin x + cos x)2
Cho \(\sin x=\frac{-1}{3}\).
Tính P=\(cos\left(2\pi-x\right).tan\left(\pi+x\right)-tan\left(\frac{\pi}{2}-x\right).cot\left(\pi-x\right)\).
cho tam giác ABC thỏa \(\frac{\cot A+\cot B+\cot C}{2}=\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\)
Tính bán kính đường tròn ngoại tiếp tam giác ABC
Giúp em bài này với ạ , em chưa nghĩ ra được cách làm
Chứng minh
\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a+cot^3a\)
1. cho sinx + cosx = 1/2 . Tính sin3x + cos3x = ?
2. P = \(\frac{1-2sin^2x}{2cot\left(\frac{\pi}{4}+x\right)cos^2\left(\frac{\pi}{4}-x\right)}\)
3. cho tanx + cotx = 2 . Tính tan2x + cot2x
Bài 1 : Cho \(\alpha\) \(\in\) \(\left(0;\frac{\pi}{2}\right)\) và tan \(\alpha\) \(=\frac{13}{8}\) \(\in\) \(\left(\frac{\pi}{2};\pi\right)\) . Tính \(sin\alpha;cot\alpha;cos\alpha\)