3) Chứng minh bằng biến đổi tương đương ; \(2\left(a^2+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow2\left(a^3+b^3\right)\ge a^3+b^3+a^2b+ab^2\)
\(\Leftrightarrow a^3+b^3\ge a^2b+ab^2\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\)
\(\Leftrightarrow a^2+b^2\ge2ab\)(Chia cả hai vế cho a+b > 0)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(Luôn đúng)
Vì bđt cuối luôn đúng nên bđt ban đầu được chứng minh.
b) Bạn biến đổi tương tự.
3) \(a^2-2ab+b^2\ge0\Leftrightarrow2a^2-2ab+2b^2\ge a^2+b^2\)
\(2\left(a^3+b^3\right)\ge\left(a+b\right)\left(a^2+b^2\right)\Leftrightarrow\left(a+b\right)\left(2a^2-2ab+2b^2\right)\ge\left(a+b\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow2a^2-2ab+2b^2\ge a^2+b^2\)(đúng với a,b>0)
4) \(4\left(a^3+b^3\right)\ge\left(a+b\right)^3\Leftrightarrow\left(a+b\right)\left(4a^2-4ab+4b^2\right)\ge\left(a+b\right)\left(a^2+2ab+b^2\right)\)
\(\Leftrightarrow4a^2-4ab+4b^2\ge a^2+2ab+b^2\)(do a,b>0)
\(\Leftrightarrow3x^2-6xy+3y^2\ge0\Leftrightarrow3\left(x-1\right)^2\ge0\)(đúng)