Ta có : n(n+1)(2n+1)=n(n+1)(2n+4-3)
=> B = 2n(n+1)(n+2)-3n(n+1)
Lập luận mỗi tích trên đều chia hết cho 6 => đpcm ()
Ta có : n(n+1)(2n+1)=n(n+1)(2n+4-3)
=> B = 2n(n+1)(n+2)-3n(n+1)
Lập luận mỗi tích trên đều chia hết cho 6 => đpcm ()
chứng minh rằng với mọi số nguyên n ta luôn có
a) n.(n+1) chia hết cho 2
b) n.(n+1).n.(n+2) chia hết cho 6
c)n.(n+1).(2n+1) chia hết cho 2
d) n.(2n+1) .(7n+1) chia hết cho 6
Chứng minh rằng n(n+1)(2n+1) chia hết cho 6 với mọi số nguyên n
Chứng minh rằng: n(n+1)(2n+1) chia hết cho 6 với mọi số nguyên n
Chứng tỏ rằng n(n + 1)( 2n+ 1) chia hết cho 6 với mọi số nguyên n
Chứng minh rằng n (n + 1)(2n + 1) chia hết cho 6 với mọi số nguyên n.
Chứng minh rằng n(n+1)(2n+1) chia hết cho 6 với mọi số nguyên n
CMR với mọi số nguyên n thì
a, (n^2+3n-1)(n+3)-n^3 +2 chia hết cho 5
b,(6n+1)(n+5)-(3n+5)(2n-1) chia hết cho 2
c,n(n+5)-(n-3)(n+3) luôn chia hết cho 6
?
Bài 5: Chứng minh rằng: Tổng lập phương của 3 số nguyên liên tiếp luôn chia hết cho 9. (a^3 đọc
là a lập phương)
Bài 6: Chứng minh rằng:
a) n(n + 1) (2n + 1) chia hết cho 6
b) n^5 - 5n^3 + 4n chia hết cho 120 Với mọi số n thuộc N
Bài 7: Chứng minh rằng: n^4 + 6n^3 + 11n^2 + 6n chia hết cho 24 Với mọi số n Z
Bài 8: Chứng minh rằng: Với mọi số tự nhiên n lẻ thì :
a) n^2 + 4n + 3 chia hết cho 8
b) n^3 + 3n^2 - n - 3 chia hết cho 48
c) n^12 - n^8 - n^4 + 1chia hết cho 512
Bài 9: Chứng minh rằng:
a) Với mọi số nguyên tố p>3 thì p^2 – 1 chia hết cho 24
b) Với mọi số nguyên tố p, q >3 thì p^2 – q^2 chia hết cho 24
Bài 10: Chứng minh rằng:
n^3 + 11n chia hết cho 6 với mọi số n thuộc Z.
HD: Tách 11n = 12n – n
Chứng minh rằng:
a,Tổng của 3 cố nguyên liên tiếp thì chia hết cho 3
b,n.(n+1).(2n+1) chia hết cho 6(với mọi n)