Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Ta có: \(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}^{\left(1\right)}\)
Lại có: \(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}^{\left(2\right)}\)
Từ (1) và (2) => \(\frac{a}{a+b}=\frac{c}{c+d}\left(dpcm\right)\)