Ta có: \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)=\left(n-1\right)\left(n+1\right)\)
Vì \(n\in Z\Rightarrow\left(n-1\right)n\left(n+1\right)\)là tích của ba số nguyên liên tiếp \(A'⋮3!\)
Hay \(n^3-n⋮6\). Nên \(\left(11^3-11\right)+\left(12^3-12\right)+...+\left(1945^3-1945\right)⋮6\)
\(\Rightarrow\left(11^3+12^3+...+1945^3\right)-\left(11+12+...+1945\right)⋮6\)
Mà
\(11+12+...+1945=\frac{1935\left(1945+11\right)}{2}=\frac{1935.1956}{2}=1935.978=1935.163.6⋮6\)
Do đó, suy ra \(11^3+12^3+...+1945^3⋮6\left(\text{đ}pcm\right)\)