Gọi A=\(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
Nhân \(\frac{1}{7^2}\)vào A ta được
\(\frac{1}{7^2}\).A= \(\frac{1}{7^4}-\frac{1}{7^6}+\frac{1}{7^8}-...-\frac{1}{7^{98}}+\frac{1}{7^{100}}+\frac{1}{7^{102}}\)
A=\(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+....+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)
Cộng \(\frac{1}{7^2}A\)+\(A\)=\(\frac{1}{49}-\frac{1}{7^{102}}\)\(\Rightarrow\frac{50}{49}A=\frac{1}{49}-\frac{1}{7^{102}}\Rightarrow A=\left(\frac{1}{49}-\frac{1}{7^{102}}\right).\frac{49}{50}\)
\(A=\frac{1}{50}-\frac{1}{7^{102}}.\frac{49}{50}