Ta có : 1/5^2 + 1/6^2 + 1/7^2 +....+ 1/2007^2 > 1/5.6 + 1/6.7 + 1/7.8 +...+ 1/2007.2008 = 1/5 - 1/6 + 1/6 - 1/7 + 1/7 - 1/8 +....+ 1/2007 - 1/2008 = 1/5 -1/2008 ko > 1/5
nhưng cái biểu thức nó cũng lớn hơn cái biểu thức bạn đưa ra nên ko thể chứng minh nó >\(\frac{1}{5}\)
mk ms nghĩ ra câu trả lời này, mn kiểm tra hộ mk xem nó có đúng ko nhé
\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{2007^2}>\left(\frac{1}{4}-\frac{21}{100}\right)+\frac{1}{6.7}+...\frac{1}{2007.2008}=B\)
\(B=\left(\frac{1}{4}-\frac{21}{100}\right)+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}...+\frac{1}{2007}-\frac{1}{2008}\)
\(B=\left(\frac{1}{4}-\frac{21}{100}\right)+\left(\frac{1}{6}-\frac{1}{2008}\right)>\frac{1}{5}=\left(\frac{1}{4}-\frac{1}{20}\right)+\left(\frac{1}{6}-\frac{1}{6}\right)\)
\(\Rightarrow B>\frac{1}{5}\Rightarrow\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)