Cho hàm số: y=(m-1)x+m (d)
a, Tìm m để hàm số đồng biến, nghịch biến
b, Tìm m để hàm số song song với trục hoành
c, Tìm m để đồ thị hàm số đi qua điểm A(-1;1)
d, Tìm m để đồ thị hàm số song song với đường thẳng có phương trrình: x-2y=1
e, Tìm m để đồ thị hàm số cắt trục hoành tại điểm A có hoành độ \(x=2-\frac{\sqrt{3}}{2}\)
f, Chứng minh rằng đường thẳng (d) luôn đi qua điểm cố định khi m thay đổi
cho tam giác abc nội tiếp đường tròn tâm O bán kính R. M là 1 điểm tùy ý trên đáy BC( M khác B, C) . Vẽ đường tròn O1 đi qua M và tiếp xúc với AB tại B. Vẽ đường tròn tâm O2 qua M và tiếp xúc với AC tại C. Hai đường tròn (O1) và (O2) cắt nhau tại điểm thứ hai D
1) chứng minh D nằm trên đường tròn
2) Chứng minh rằng khi M thay đổi trên đáy Bc thì các đường thẳng MD luôn đi qua 1 điểm cố định
3) giả sử tam giác ABC đều. Tính tích AM.AD theo R. Em có nhân xét gì qua kết quả vừa tìm được.
Cho đtròn (O;R) và AB là đường kính cố định của (O). Đường thẳng d là tiếp tuyến của (O) tại B. MN là đường kính thay đổi của (O) sao cho MN không vuông góc với AB (M khác A,B). Các đường thẳng AM, AN cắt d tương ứng tại C và D. Gọi I là trung điểm CD và H là giao điểm AI và MN. Khi MN thay đổi chứng minh rằng:
a) AM . AC không đổi
b) Tứ giác CMND nội tiếp
c) Điểm H luôn luôn thuộc 1 đường tròn cố định
Cho tam giác ABC nội tiếp đường tròn tâm O bán kính R. M là 1 điểm tùy ý trên đáy BC( M khác B,C). Vẽ đường tròn tâm O1 đi qua M và tiếp xúc với AB tại B. Vẽ đường tròn tâm O2 đi qua M và tiếp xúc với AC tại C. Hai đường tròn (O1) và (O2) cắt nhau tại điểm thứ hai D
1) chứng minh D nằm trên đường tròn (O)
2) chứng minh rằng ki M thay đổi trên đáy BC thì các đườn thẳng MD luôn đi qua 1 điểm cố định
3)giả sử tam giác abc đều . Tính tích AM.AD theo R. Em có nhận xét gì kết quả vừa tìm được.
Cho tam giác ABC nội tiếp đường tròn tâm O bán kính R. M là 1 điểm tùy ý trên đáy BC( M khác B,C). Vẽ đường tròn tâm O1 đi qua M và tiếp xúc với AB tại B. Vẽ đường tròn tâm O2 đi qua M và tiếp xúc với AC tại C. Hai đường tròn (O1) và (O2) cắt nhau tại điểm thứ hai D
1) chứng minh D nằm trên đường tròn (O)
2) chứng minh rằng ki M thay đổi trên đáy BC thì các đườn thẳng MD luôn đi qua 1 điểm cố định
3)giả sử tam giác abc đều . Tính tích AM.AD theo R. Em có nhận xét gì kết quả vừa tìm được.
Cho tam giác ABC nội tiếp đường tròn tâm O bán kính R. M là 1 điểm tùy ý trên đáy BC( M khác B,C). Vẽ đường tròn tâm O1 đi qua M và tiếp xúc với AB tại B. Vẽ đường tròn tâm O2 đi qua M và tiếp xúc với AC tại C. Hai đường tròn (O1) và (O2) cắt nhau tại điểm thứ hai D
1) chứng minh D nằm trên đường tròn (O)
2) chứng minh rằng ki M thay đổi trên đáy BC thì các đườn thẳng MD luôn đi qua 1 điểm cố định
3)giả sử tam giác abc đều . Tính tích AM.AD theo R. Em có nhận xét gì kết quả vừa tìm được.
cho hệ pt:mx+2my=m+1
x+(m+1)y=2
1)CMR nếu hệ có nghiệm duy nhất (x;y) thì điểm M(x;y) luôn luôn thuộc 1 đường thẳng cố định khi m thay đổi
2)xác định m để diểm M thuộc đường tròn có tâm là gốc toạ độ và bán kính bằng \(\sqrt{5}\)
điểm cố định mà đường thẳng \(\left(d\right):y=\left(m-2\right)x+m-1\) đi qua khi m thay đổi là \(A\left(x_0;y_0\right)\) thì \(x_0+y_0=\)
Cho đường tròn tâm O, đường kính AB. M là một điểm nằm trên đoạn thẳng OB (M khác O và khác B). Đường thẳng d qua M và vuông góc với AB cắt đường tròn (O) tại C, D. Trên tia MD lấy điểm E nằm ngoài đường tròn (O). Đường thẳng AE cắt (O) tại điểm thứ hai I khác A, đường thẳng BE cắt (O) tại điểm thứ hai K khác B. Gọi H là giao điểm của BI và d.
a. Chứng minh tứ giác MBEI nội tiếp được trong một đường tròn. Xác định tâm của đường tròn này.
b. Chứng minh các tam giác IEH và MEA đồng dạng với nhau.
c. Chứng minh EC.ED = EH.EM
d Chứng minh khi E thay đổi, đường thẳng HK luôn đi qua một điểm cố định