Chứng tỏ rằng:
$\frac{k}{n.(n + k)}$ = $\frac{1}{n}$ - $\frac{1}{n + k}
Chứng tỏ rằng:
$\frac{k}{n.(n + k)}$ = $\frac{1}{n}$ - $\frac{1}{n + k}
giup mk bai nai voi
Chứng tỏ rằng
\(\frac{k}{n.\left(n+k\right)}\)=\(\frac{1}{n}-\frac{1}{n+k}\)
Aps dụng;Tính; S=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
Chứng minh rằng : \(\frac{k}{n\left(n+k\right)}=\frac{1}{n}-\frac{1}{n+k}\) ( với n,k E N, n #0 )
Chứng minh rằng : \(\frac{k}{n\left(n+k\right)}=\frac{1}{n}-\frac{1}{n+k}\)
CMR: \(\frac{k}{n\left(n+k\right)}=\frac{1}{n}+\frac{-1}{n+k}\)
Với mọi n thuộc Z*, k thuộc N*.
giúp mình với!
chung minh: \(\frac{1}{n}-\frac{1}{n+k}=\frac{k}{n.\left(n+k\right)}\)
Tính:
\(\frac{1}{n}-\frac{1}{n-k}\left(n,k\in N,\right)n\ne0\)
Chứng tỏ rằng với n thuộc N, n khác 0
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
chứng tỏ rằng với n thuộc N,n khác 0 thì
\(\frac{1}{n\left(n+1\right)}\)=\(\frac{1}{n}-\frac{1}{n+1}\)
\(\frac{1}{n\left(n+1\right)}\)=\(\frac{1}{n}\)- \(\frac{1}{n+1}\)chứng tỏ rằng n thuộc N , n ko thuộc 0