Ta có :
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{67.69}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{67}-\frac{1}{69}\)
\(=\frac{1}{3}-\frac{1}{69}\)
\(=\frac{22}{69}\)
Mà \(\frac{22}{69}>\frac{11}{35}\left(=\frac{22}{70}\right)\)
\(\Rightarrowđpcm\)
Ta có: \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{67.69}\)
= \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{7}+...+\frac{1}{67}-\frac{1}{69}\)
= \(\frac{1}{3}-\frac{1}{69}\)
= \(\frac{22}{69}\)> 11/35
Có:\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{67.69}=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{67}-\frac{1}{69}\)
\(=\frac{1}{3}-\frac{1}{69}=\frac{22}{69}\left(1\right)\)
\(\frac{11}{35}=\frac{22}{70}\left(2\right)\)
Từ (1)và (2)=>đpcm