Chứng tỏ rằng: \(1< \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+......+\frac{1}{16}+\frac{1}{17}< 2\)2
Chứng tỏ rằng: \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{16}+\frac{1}{17}
Chứng tỏ rằng
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}<2\)
Chứng tỏ rằng : \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}<2\)
Chứng tỏ rằng\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}<2\)
Chứng tỏ rằng: \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{16}+\frac{1}{17}<2\)
chứng tỏ
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+......+\frac{1}{17}< 2\)
chứng tỏ \(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+....+\frac{1}{17}\)<2
Chứng tỏ rằng: \(E=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{299}+\frac{1}{300}< \frac{2}{3}\)
\(F=\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+...+\frac{1}{17}< 2\)