Với n thuộc N thì n chia cho 3 có ba dạng là: 3k + 1, 3k + 2 và 3k (k thuộc N)
+) Với n = 3k thì n ⋮ 3 => n(n + 4)(n + 8) ⋮ 3 (1)
+) Với n = 3k + 1 thì n + 8 = 3k + 1 + 8 = 3k + 9 ⋮ 3
=> n + 8 ⋮ 3
=> n(n + 4)(n + 8) ⋮ 3 (2)
+) Với n = 3k + 2 thì n + 4 = 3k + 2 + 4 = 3k + 6 ⋮ 3
=> n + 4 ⋮ 3
=> n(n + 4)(n + 8) ⋮ 3 (3)
Từ (1)(2)(3) => n(n + 4)(n + 8) ⋮ 3 với mọi n thuộc N
Giả sử
- Nếu n=3k ( k\(\in\)N) thì n \(⋮\)3 => n(n+4)(n+8) \(⋮\)3
- Nếu n= 3k + 1 (k\(\in\)N) thì n+8=3k+1+8=3k+9=3(k+3) \(⋮\)3
- Nếu n=3k+2 (k\(\in\)N) thì n+4=3k+2+4=3k+6=3(k+2) \(⋮\)3
=>Với n \(\in\)N thì n(n+4)(n+8) \(⋮\)3