gọi hai số đó là a và b
a = m.n+r
b = m.k+r
a-b = m.n+r-(m.k+r)
a-b = m.n+r-m.k-r
a-b = m.n-m.k = m.(n-k) chia hết cho m
gọi hai số đó là a và b
a = m.n+r
b = m.k+r
a-b = m.n+r-(m.k+r)
a-b = m.n+r-m.k-r
a-b = m.n-m.k = m.(n-k) chia hết cho m
Chứng tỏ rằng với hai số tự nhiên bất kì khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại.
a) Nếu tổng của hai số tự nhiên là một số lẻ thì tích của chúng có chia hết cho 2 không.
b) Chứng tỏ rằng với hai số tự nhiên bất kỳ khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại.
c) Chứng tỏ rằng với 6 số tự nhiên bất kỳ luôn có ít nhất hai số tự nhiên mà hiệu của chúng chia hết cho 5.
d) Chứng tỏ rằng tổng của 5 số tự nhiên liên tiếp không chia hết cho 4.
e) Chứng tỏ rằng tổng của 2 số chẵn liên tiếp luôn chia hết cho 8.
g) Cho 4 số tự nhiên không chia hết chia hết cho 5 , khi chia cho 5 được những số dư kháu nhau . Chứng minh rằng tổng của chúng chia hết cho 5.
h) Chứng minh rằng không có số tự nhiên nào mà chia cho 15 dư 6 còn chia 9 thì dư 1.
Chứng tỏ rằng với 2 số tự nhiên bất kì khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại
Chứng tỏ rằng với 2 số tự nhiên bất ki khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại
Chứng tỏ rằng:
a. Trong 3 số tự nhiên bất kì bao giờ cũng có thể chọn được hai số sao cho tổng của chứng chia hết cho 2.
b. Nếu hai số tự nhiên a và b (a>b) khi chia cho số tự nhiên m có cùng số dư thì a-b chia hết cho m.
c. Trong 6 số tự nhiên bất kì bao giờ cũng có thể chọn được hai số sao cho hiệu của chúng chia hết cho 5.
Cho 102 số tự nhiên bất kỳ. Chứng minh rằng tồn tại 2 số trong 102 số đã cho mà chúng có tổng hoặc hiệu chia hết cho 200
Tìm 1 số có 2 chữ số. Biết chữ số hàng chục bàng hiệu giữa số đó và số viết theo thứ tự ngược lại
Cho số tự nhiên M. Người ta đổi chỗ các chữ số của M để được số N gấp 3 lần số M. Chứng minh rằng số N chia hết cho 27
Chứng tỏ rằng 2 số tự nhiên a và b khi chia cho số tự nhiên c\(\ne\)khác 0 có cùng số dư thì hiệu của chúng chia hết cho c
Chứng tỏ rằng nếu hai số tự nhiên không phải bội của 3 mà có số dư khác nhau khi chia cho thì hiệu của chúng chia hết cho 3
chứng minh rằng
nếu hai số tự nhiên a và b (a>b ) khi chia cho số tự nhiên m có cùng số dư thì hiệu a - b chia hết cho m