đặt A=n(n+1)(n+5)
-nếu n chia hết cho 3=>A chia hết cho 3
-nếu có dạng 3k+1(k là STN)
=>n+5=3k+1+5=3(2k+3) chia hết cho 3
=>A chia hết cho 3
-nếu n có dạng 3k+2
=>n+1=3k+3=3(k+1) chia hết cho 3
=>A chia hết cho 3
Do n là số tự nhiên nên n = 3k hoặc n = 3k + 1 hoặc n = 3k + 2 (k thuộc N)
+ Với n = 3k thì n chia hết cho 3 => n.(n + 1).(n + 5) chia hết cho 3
+ Với n = 3k + 1 thì n + 5 = 3k + 6 = 3.(k + 2) chia hết cho 3 => n.(n + 1).(n + 5) chia hết cho 3
+ Với n = 3k + 2 thì n + 1 = 3k + 3 = 3.(k + 1) chia hết cho 3 => n.(n + 1).(n + 5) chia hết cho 3
Chứng tỏ tích n.(n + 1).(n + 5) là 1 số chia hết cho 3 với mọi số tự nhiên n