Cho S=1/4+2/4^2+3/4^3+.......+2016/4^2016
Chứng tỏ rằng S<1/2
chứng tỏ rằng:
1/4<1/5+2/5^2+3/5^3+...+2016/5^2016<1/3
Cho S=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\) Chứng tỏ S < 1
Cho m/n=1+1/2+1/3+1/4+..........+1/2016
Chứng tỏ rằng m chia hết cho 2017
Câu 1
a) Chứng tỏ rằng 1/3 - 1/3^2 + 1/3^3 - 1/3^4 + 1/3^5 - 1/3^6 < 1/4
b) Cho A= 2015^2016 + 2016^2015 x 2015 và B= 1 + 2^2 + 3^2 + ......+2016^2. Tính AB có chia hết cho 5 không? Vì sao?
Cho A = 1/2^2+1/3^2+1/4^2+...+1/2016^2+1/2017^2. Chứng tỏ rằng A không phải là số tự nhiên
chứng tỏ rằng 22.8^2n + 21^n+1
chứng tỏ rằng số (3^2^2016 + 10) / 13 là số tự nhiên
Cho đẳng thức: x×(x+1)×(x+2)×(x+3)×...×(x+2016)=2016 (với x>0)
Chứng tỏ rằng x<1/2015
Cho A=1.2.3...2015.2016(1+1/2+1/3+...+ 1/2015+1/2016)
Chứng tỏ rằng A là số tự nhiên chia hết cho 2017