GIẢI TIẾP : Từ [1] và [2] => 1 chia hết cho d => d = 1
=> dpcm
cho minh cai dung
gọi d là ƯCLN(2n+1;3n+2).theo bài ra ta có:
2n+1 chia hết cho d=>6n+3 chia hết cho d
3n+2 chia hết cho d=>6n+4 chia hết cho d
=>1 chia hết cho d=>d=1
=>ĐPCM
Gọi d = ƯCLN(2n + 1; 3n + 2) (d thuộc N*)
=> 2n + 1 chia hết cho d; 3n + 2 chia hết cho d
=> 3.(2n + 1) chia hết cho d; 2.(3n + 2) chia hết cho d
=> 6n + 3 chia hết cho d; 6n + 4 chia hết cho d
=> (6n + 4) - (6n + 3) chia hết cho d
=> 6n + 4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n + 1; 3n + 2) = 1
Chứng tỏ phân số 2n + 1/3n + 2 tối giản
câu c nhá bn
gọi d là ƯCLN(2n+1;3n+2),theo đề ra ta cs:
2n+1 chia hết cho d =>6n+3 chia hết cho d
3n+2 chia hết cho d=> 6n+4 chia hết cho d
=> 1 chia hết cho d=>d=1
vậy....
các bạn cho mình hỏi:
chứng tỏ rằng phân số 2n+1\3n+1 là phân số tối giản ?
mình thử r nhưng ko ra, các bạn giúp mình nha^^