Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Hà Khoa

chứng tỏ rằng: nếu a + b/ c + d = b + c/ d + a (trong đó a + b + c + d khác 0) thì a = c

nguyễn khắc bảo
15 tháng 10 2021 lúc 18:38

vì \(\frac{a+b}{c+d}=\frac{b+c}{a+d}\)mà áp dụng tính chất day tỉ số bằng nhau ta có \(\frac{a+b}{c+d}=\frac{a}{c}=\frac{b}{d}\)  ;    \(\frac{b+c}{d+a}=\frac{b}{d}=\frac{c}{a}\)

vì \(\frac{a}{c}=\frac{b}{d}\)\(\frac{c}{a}=\frac{b}{d}\)=>\(\frac{a}{c}=\frac{c}{a}\)=>a.a=c.c=>\(a^2\)=\(c^2\)=>a=c

Vậy nếu\(\frac{a+b}{c+d}=\frac{b+c}{a+d}\)  thì a=c

Khách vãng lai đã xóa
Phước Lộc
18 tháng 10 2021 lúc 11:16

Vì \(\frac{a+b}{c+d}=\frac{b+c}{a+d}\) , Áp dụng t/c của dãy tỉ số bằng nhau, ta có : 

\(\frac{a+b}{c+d}=\frac{a}{c}=\frac{b}{d}\)

\(\frac{b+c}{d+a}=\frac{b}{d}=\frac{c}{a}\)

Vì \(\frac{a}{c}=\frac{b}{d}\) mà \(\frac{c}{a}=\frac{b}{d} \Rightarrow\frac{a}{c}=\frac{c}{a} \Rightarrow a.a=c.c=a^2.c^2 \Rightarrow a=c\)

Vậy : \(\frac{a+b}{c+d}=\frac{b+c}{a+d}\) thì \(\Leftrightarrow a=c\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Vũ Thế Lê Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
GOD_Shine
Xem chi tiết
li syaoran
Xem chi tiết
nguyen vu anh
Xem chi tiết
vunguyenminhtrang
Xem chi tiết
Đạt Phạm
Xem chi tiết
Nguyễn Như Thùy
Xem chi tiết
Thoai Lương
Xem chi tiết