Chứng tỏ rằng 1 số nguyên tố lớn hơn 3 có dạng 6k+1 hoặc 6k+5 (k thuộc N)
chứng minh một số nguyên tố lớn hơn 3 chỉ có dạng 6k + 1 hoặc 6k + 5 với k thuộc tập hợp N khác 0
cho p là số nguyên tố lớn hơn 3.
a) chứng tỏ rằng p có dạng 6k + 1 hoặc 6k + 5
b) biết 8p + 1 cũng là một số nguyên tố, chứng minh rằng 4p + 1 là hợp số
cho p là số nguyên tố lớn hơn 3
a)chứng tỏ rằng p có dạng 6k + 1 hoặc 6k +5
b)biết 8p + 1 cũng là một số nguyên tố, chứng minh ằng 4p + 1 là hợp số
Cho p là số nguyên tố lớn hơn 3.
a) Chứng tỏ p có dạng 6k +1 hoặc 6k + 5
b) Biết 8p + 1 là một số nguyên tố, chứng minh rằng 4p + 1 là hợp số
Cho p là số nguyên tố lớn hơn 3.
a) Chứng tỏ rằng p có dạng 6k + 1 hoặc 6k + 5
b) Biết 8p + 1cũng là số nguyên tố, chứng minh rằng 4p + 1 là hợp số.
Cho p là số nguyên tố lớn hơn 3
a) Chứng tỏ rằng p có dạng 6k+1 hoặc 6k+5
b) Biết 8p+1 cũng là 1 số nguyên tố. Chứng minh rằng 4p+1 là hợp số
bài 121:Cho p là số nguyên tố lớn hơn 3
a)Chứng tỏ rằng p dạng 6k+1 hoặc 6k+5.
b)Biết 8p+1 cũng là một số nguyên tố, chứng minh rằng 4p+1 là hợp số.
Cho p là số nguyên tố lớn hơn 3
a)Chứng tỏ rằng p có dạng 6k+1 hoặc 6k+5
b)Biết 8p +1 cũng là 1 số nguyên tố,chứng minh rằng 4p+1 là hợp số