Cho góc AOB và góc BOC là hai góc kề bù , OM , ON lần lượt là các ia phân giác của góc ACB và góc BOC
Chứng minh góc MON = 90 độ
Ta có : OM là tia phân giác của góc AOB nên tia OM nằm giữa hai tia OA và OB và góc MOB = 1/2 góc AOB
Tương tự : ON là tia pân giác của góc BOC nên ON nằm giữa hai tia OB và OC và góc BON = 1/2 góc BOC
Lại có : góc AOB và góc BOC là hai góc kề bù nên tia OB nằm giữa hai tia OA va OC
Suy ra : OB nằm giữa hai tia OM và ON nên :
góc MON = góc MOB + góc BON
= 1/2 * ( góc AOB + góc BOC )
= 1/2 * 180 độ = 90 độ
Cho góc AOB và góc BOC là hai góc kề bù , OM , ON lần lượt là các ia phân giác của góc ACB và góc BOC Chứng minh góc MON = 90 độ Ta có : OM là tia phân giác của góc AOB nên tia OM nằm giữa hai tia OA và OB và góc MOB = 1/2 góc AOB Tương tự : ON là tia pân giác của góc BOC nên ON nằm giữa hai tia OB và OC và góc BON = 1/2 góc BOC Lại có : góc AOB và góc BOC là hai góc kề bù nên tia OB nằm giữa hai tia OA va OC Suy ra : OB nằm giữa hai tia OM và ON nên : góc MON = góc MOB + góc BON = 1/2 * ( góc AOB + góc BOC ) = 1/2 * 180 độ = 90 độ
Gọi 2 góc kề bù là \(\widehat{xOy};\widehat{yOz}\)có 2 tia phân giác lần lượt là Om và On.
CM: \(Om\perp On\)
Ta có hình vẽ:
Ta có:
Góc mOy = 1/2 góc xOy(gt)
Góc yOn = 1/2 góc yOz (gt)
Vì Oy nằm giữa 2 tia Om, On nên:
Góc mOn = góc mOy + góc yOn
= 1/2 góc xOy + 1/2 góc yOz = 1/2 (góc xOy + góc yOz)
= 1/2 . 180o = 90o
=> \(Om\perp On\)
Cho góc AOB và góc BOC là hai góc kề bù , OM , ON lần lượt là các ia phân giác của góc ACB và góc BOC
Chứng minh góc MON = 90°
Ta có : OM là tia phân giác của góc AOB nên tia OM nằm giữa hai tia OA và OB và góc MOB = 1/2 góc AOB
Tương tự : ON là tia pân giác của góc BOC nên ON nằm giữa hai tia OB và OC và góc BON = 1/2 góc BOC
Lại có : góc AOB và góc BOC là hai góc kề bù nên tia OB nằm giữa hai tia OA va OC
Suy ra : OB nằm giữa hai tia OM và ON nên :
góc MON = góc MOB + góc BON
= 1/2 * ( góc AOB + góc BOC )
= 1/2 * 180° = 90°
Gọi hai góc kề bù là \(\widehat{xOy};\widehat{yOz}\)có hai tia phân giác lần lượt là Om, On. Cần chứng minh: \(Om\perp On\)
Ta có:
\(\widehat{mOy}=\frac{1}{2}\widehat{xOy}\left(gt\right)\)
\(\widehat{yOn}=\frac{1}{2}\widehat{yOz}\left(gt\right)\)
Vì Oy nằm giữa hai tia Om, On nên:
\(\widehat{mOn}=\widehat{mOy}+\widehat{yOn}\)
\(=\frac{1}{2}\widehat{xOy}+\frac{1}{2}\widehat{yOz}\)
\(=\frac{1}{2}\left(\widehat{xOy}+\widehat{yOz}\right)\)
\(=\frac{\widehat{xOy}+\widehat{yOz}}{2}\)
\(=\frac{1}{2}.180^o\)
\(=\frac{180^o}{2}\)
\(=90^o\)
Suy ra \(Om\perp On\)
Vậy \(Om\perp On\)
GT : \(\widehat{xOy}\)và \(\widehat{x'Oy}\)kề bù Ot là tia phân giác của góc \(\widehat{xOy}\); Ot' là tia phân giác của góc \(\widehat{x'Oy}\)
KL : \(Ot\perp Ot'\)
Đặt : \(\widehat{xOy}=m^0(0^0< m< 180^0)\)
Hai góc xOy và yOx' là hai góc kề bù nên \(\widehat{xOy}=\widehat{yOx'}=180^0\)
Do đó : \(\widehat{x'Oy}=180^0-\widehat{xOy}=180^0-m^0\)
Theo giả thiết Ot và Ot' lần lượt là tia phân giác của các góc xOy và x'Oy nên \(\widehat{tOy}=\frac{1}{2}\widehat{xOy}=\frac{1}{2}m^0\) và \(\widehat{t'Oy}=\frac{1}{2}\widehat{x'Oy}=\frac{1}{2}\left[180-m^0\right].\)
Tia Oy nằm giữa hai tia Ot và Ot',do đó: \(\widehat{tOt}=\widehat{tOy}+\widehat{yOt'}=\frac{1}{2}m^0+\frac{1}{2}\left[180^0-m^0\right]=90^0\)
Vậy : ...