1/1*4+1/4*7+1/7*10+...+1/2010*2013=A
3A=3/1*4+3/4/*7+3/7*10+...+3/2010*2013
3A=1-1/4+1/4-1/7+1/7-1/10+...+1/2010-1/2013
3A=1-1/2013<1
Suy ra : A <1/3
Nho k cho minh voi nhe
1/1*4+1/4*7+1/7*10+...+1/2010*2013=A
3A=3/1*4+3/4/*7+3/7*10+...+3/2010*2013
3A=1-1/4+1/4-1/7+1/7-1/10+...+1/2010-1/2013
3A=1-1/2013<1
Suy ra : A <1/3
Nho k cho minh voi nhe
Cho S=\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+.....+\frac{3}{40.43}+\frac{3}{43.46}.\)
Hãy chứng tỏ rằng S<1
S=\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)
chứng tỏ rằng S<1
Bài 5: Cho S = \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\). Hãy chứng tỏ rằng S < 1.
Cho \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\).Hãy chứng tỏ rằng S < 1
Cho \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\) . Hãy chứng tỏ rằng \(S< 1\)
bài 1,Cho \(B=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{19}\).Hãy chứng tỏ rằng B>1.
bài 2,Cho \(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\).Hãy chứng tỏ rằng S<1.
Cho S=\(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+.....+\frac{3}{n.\left(n+3\right)}\) với n thuộc N*
Chứng tỏ rằng S<1
(\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+..........+\frac{1}{97.100}=\frac{0.33.x}{2009}\))
tính tổng
\(s=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{100.103}+\frac{1}{103.104}+\frac{1}{104.105}+\frac{1}{105.106}+\frac{1}{106.107}\)