Chứng tỏ rằng\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\)
Chứng tỏ rằng \(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\)
CMR:
\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{299}+\frac{1}{300}>\frac{2}{3}\)\(\frac{2}{3}\)
Chứng tỏ rằng
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{299}+\frac{1}{300}\)>\(\frac{2}{3}\)
Chứng minh rằng
\(\frac{1}{101}+\frac{1}{102}+.........+\frac{1}{299}+\frac{1}{300}\) > \(\frac{2}{3}\)
Chứng tỏ rằng : \(\frac{1}{101}\) + \(\frac{1}{102}\) +....+\(\frac{1}{299}\)+\(\frac{1}{300}\) > \(\frac{2}{3}\)
Chứng tỏ rằng :
\(\frac{1}{101}\)+ \(\frac{1}{102}\)+ ...... + \(\frac{1}{299}\)+ \(\frac{1}{300}\)> \(\frac{2}{3}\)
Chứng tỏ rằng \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.........+\frac{1}{150}>\frac{1}{3}\)
Chứng tỏ rằng \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{200}>\frac{1}{2}\)
Chi tiết rõ ràng nha