gọi ba số tự nhiên liên tiếp là a; a+1:a+2 (a thuộc N)
ta thấy: a+1+a+2+a=3a+3=3.(a+1) chia hết cho 3
vậy.........
gọi năm số tự nhiên liên tiếp là a;a+1;a+2;a+3;a+4(a thuộc N)
ta thấy; a+a+1+a+2+a+3+a+4=5a+10 chia hết cho 5
vậy..............
a. Ta gọi 3 số nguyên liên tiếp đó là: 3k + 1; 3k + 2; 3k + 3
Ta có: ( 3k + 1 ) + ( 3k + 2 ) + ( 3k + 3 )
= 3k + 3k + 3k + ( 1 + 2 + 3 )
= 3k x 3 + 6
= 9k + 6
Ta có: 9k chia hết cho 3; 6 cũng chia hết cho 3 \(\Rightarrow\)9k + 6 chia hết cho 3 \(\Rightarrow\)tổng của 3 số nguyên liên tiếp chia hết cho 3
b. Ta gọi 5 số nguyên liên tiếp đó là: 5k + 1;5k + 2;5k + 3;5k + 4;5k + 5
Ta có: ( 5k + 1 ) + ( 5k + 2 ) + ( 5k + 3 ) + ( 5k + 4 ) + ( 5k + 5 )
= 5k + 5k + 5k + 5k + 5k + ( 1 + 2 + 3 + 4 + 5 )
= 5k x 5 + 15
= 25k + 15
Ta có: 25k chia hết cho 5, 15 chia hết cho 5\(\Rightarrow\)25k + 15 chia hết cho 5 \(\Rightarrow\) tổng của 5 số nguyên liên tiếp chia hết cho 5
Gọi 3 số nguyên liên tiếp là a,a+1,a+2 (a thuộc N)
Ta có: a+a+1+a+2
= 3a + 3
= 3(a + 1)
Vì 3 chia hết cho 3 nên 3(a+1) chia hết cho 3
Vậy....
Gọi 5 số nguyên liên tiếp là a,a+1,a+2,a+3,a+4 (a thuôc N)
Ta có: a+a+1+a+2+a+3+a+4
= 5a+10
= 5(a+2)
Vì 5 chia hết cho 5 nên 5(a+2) chia hết cho 5
Vậy...
a)Gọi ba số nguyên liên tiếp là a, a+1, a+2
ta có cấc+a+1+a+2=3a+3
vì 3a chia hết cho 3
3 chia hết cho 3
nên tổng của 3 số nguyên liên tiếp thì chia hết cho 3
b)Gọi 5 số nguyên liên tiếp là a,a+1,a+2.a+3.a+4
ta có:a+a+1+a+2+a+3+a+4=10a+5 chia hết cho 5
chúc bạn học tốt !!!