Ta có: aaa2015=(111a)2015
=(37.3a)2015
=372015.32015.a2015
Mà 32015 chia hết cho 3 => 372015.32015.a2015 chia hết cho 3
Vậy aaa2015 chia hết cho 3(đpcm)
Ta có: aaa2015=(111a)2015
=(37.3a)2015
=372015.32015.a2015
Mà 32015 chia hết cho 3 => 372015.32015.a2015 chia hết cho 3
Vậy aaa2015 chia hết cho 3(đpcm)
Bài 3. Tìm các chữ số sao cho số 7a4b chia hết cho 4 và chia hết cho 7
Bài 2. Tìm số tự nhiên n để 3n +
Bài 4. Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3
Bài 5. Chứng tỏ rằng tổng của 4 số tự nhiên liên tiếp không chia hết cho 4
Chứng tỏ rằng tích 3 số tự nhiên liên tiếp luôn chia hết cho 3
chứng tỏ rằng tổng 3 số tự nhiên liên tiếp luôn chia hết cho 3 ?
a,Chứng tỏ rằng ab(a+b) chia hết cho 2 (a;b thuộc N)
b,Chứng minh rằng ab + ba chia hết cho 11
c,Chưnhs minh aaa luôn chia hết cho 37
d, Chứng minh aaabbb luôn chia hết cho 7
a) tổng 10615+8 có chia hết cho 2 và 9 không
b)tổng 10^2010+14 có chia hết cho3 và 2 không
c)hiệu 10^2010-4 có chia hết cho 3 không
d)chứng minh rằng aaa luôn chia hết cho 37
e)chứng minh aaabbb luôn chia hết cho 37
f)chứng tỏ rằng ab(a+b)chia hết cho 2(a;b thuộc N)
m)chứng minh ab+ba luôn chia hết cho 11
n)chứng minh ab-ba luôn chia hết cho 9 với a>b
Chứng tỏ rằng trong 3 STN liên tiếp luôn có 1 số chia hết cho 3
Cho 2 số có 2 chữ số: a là chữ số hàng chục và b là chữ số hàng đơn vị, sẽ được viết là ab. Giả sử a>b
a, em hãy chứng tỏ rằng hiệu ( ab - ba ) luôn luôn chia hết cho 9.
c, chứng tỏ rằng tổng ( ab + ba ) luôn luôn chia hết cho 11. Số ba la số viết ngược lại của số ab
Chứng tỏ rằng với mọi số nguyên n thì :
A = ( n + 6 ) ( n + 7 ) luôn luôn chia hết cho 2 ;
B = n^2 + n + 3 không chia hết cho 2.
Chứng tỏ rằng trong 3 số tự nhiên liên tiếp luôn có một số chia hết cho 3