Tổng các số hạng của A là: 5+5+...+5+13n
(n số 5)
= 5n+13n=18n=9*(2n) => A chia hết cho 9 với mọi n thuộc N
Ta có:\(A=555...5+13n\)
\(\Rightarrow A=5n+13n\)(vì có: n số \(555..5\))
\(\Rightarrow A=18n⋮9\)
\(\Rightarrow A⋮9\left(đpcm\right)\)
Tổng các số hạng của A là: 5+5+...+5+13n
(n số 5)
= 5n+13n=18n=9*(2n) => A chia hết cho 9 với mọi n thuộc N
Ta có:\(A=555...5+13n\)
\(\Rightarrow A=5n+13n\)(vì có: n số \(555..5\))
\(\Rightarrow A=18n⋮9\)
\(\Rightarrow A⋮9\left(đpcm\right)\)
Bài 1 :Chứng tỏ rằng tích của 3 số tự nhiên liên tiếp chia hết cho 48
Bài 2 :Cho \(n\in N\).Chứng tỏ rằng
a) \(\left(5^n-1\right)⋮4\)
b)\(\left(10^n+18n-1\right)⋮27̸\)
1. Chúng tỏ rằng với mọi số tự nhiên n thì tich n.( n+5 ) chia hết cho 2.
2. Gọi A =\(n^2+n+1\left(n\inℕ\right)\)Chứng tỏ rằng :
a. A không chia hết cho 2
b. A không chia hết cho 5
1. Chứng tỏ rằng với mọi số tự nhiên n thì n2+n+1 không chia hết cho 5
2. Chứng tỏ rằng số a= 911 +1 chia hết cho cả 2 và 5
3. Chứng tỏ rằng tích n(n + 3) là số chẵn vói mọi số tự nhiên n
cho n là một số tự nhiên,chứng minh rằng \(A=n\times\left(n^2+6\right)\times\left(n^2+9\right)\) chia hết cho 5
a,chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6) chia hết cho 2
b, chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n+5) chia hết cho 2
a) Chứng tỏ rằng tổng 5 số tự nhiên liên tiếp thì chia hết cho 5
b) Chứng tỏ rằng ( n+2010)+(n+2011) luôn chia hết cho 2 với mọi n là số tự nhiên
Chứng tỏ rằng
a, Chứng tỏ rằng trong 5 số tự nhiên liên tiếp có một số chia hết cho 3
b, Chứng tỏ rằng (9m+1) (9m+2) (9m+3) (9m+4) chia hết cho 5 với mọi n thuộc N
1.53. Chứng tỏ rằng:
a) 10^33 + 8 chia hết cho 18
b) 10^10 + 14 chia hết cho 6
1.54. Chứng tỏ rằng với mọi số tự nhiên n, tích (n+7) (n+8) luôn chia hết cho 2
1.55. Chứng tỏ rằng tích của 3 số tụ nhiên chắn liên tiêp chia hết cho 48
1.56. Cho n \(\in\)N*. Chứng tỏ rằng:
a (5^n - 1) \(⋮\)4
b) ( 10^n + 18n - 1) \(⋮\)27
1.57. Tìm số tự nhiên có 5 chữ số, các chữ số giống nhau, biết rắng số đó chia cho 5 dư 1 và chia hết cho 2
1.Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) ( n + 6 ) chia hết cho 2
2.Chứng tỏ rằng với mọi số tự nhiên n thì tích n(n+5) chia hết cho 2
3. Gọi A = n2 + n + 1 . Chứng minh rằng :
a) A không chia hết cho 2
b) A không chia hết cho 5