Chứng tỏ rằng A= 11...1222...2 (n chữ số 1; n chữ số 2) là tích của hai số tự nhiên liên tiếp.
1,Chứng minh rằng:trong ba số tự nhiên bất kỳ đều chọn được 2 số có tổng chia hết cho 2
2,a,Chứng minh rằng,nếu p và 8p-1 là số nguyên tố thì 8p+1 là hợp số
b,Chứng tỏ rằng: A=11...1222...25 là số chính phương( Có n chữ số 1,n+1 chữ số 2)
3,Cho đoạn thẳng AB,điểm O thuộc tia đối của tia AB.Gọi M,N thứ tự là trung điểm của OA,OB
a,Chứng tỏ rằng:OA<OB
b,Trong 3 điểm O,M,N.điểm nào nằm giữa 2 điểm còn lại
c,Chứng tỏ rằng,độ dài đoạn thẳng MN không phụ thuộc vào vị trí của điểm O[O thuộc tia đối của tia AB]
a) Tìm 4 số tự nhiên liên tiếp? Biết rằng tích của chúng là 3024.
b) Chứng tỏ rằng: B = 111...1222...2 ( có n chữ số 1, n chữ số 2 và \(n\inℕ^∗\)) là tích của 2 số tự nhiên liên tiếp
cho số a=11.........1 và có n chữ số 1
số b=100.....05 và có n-1 chữ số 0
n là số tự nhiên lớn hơn 1
chứng tỏ ab+1 là số chính phương
chứng tỏ rằng số sau viết được thành tích của 2 số tự nhiên liên tiếp
111...1222...2(n chữ số 1)
B=11...........11+11.............11+66.......66+8
có 2n chữ số 1 thứ nhất
có n+1 chữ số 1 thứ hai
có n chữ số 6
C=44......44+22......22+88......88+7
có 2n chữ số 4
có n+1 chữ số 2
có n chữ số 8
chứng minh rằng đây là số chính phương
Chứng tỏ rằng số sau là tích của 2 số tự nhiên liên tiếp:111...1222...2(với 2012 chữ số 1 và 2012 chữ số 2
hứng tỏ rằng số sau là tích của 2 số tự nhiên liên tiếp:111...1222...2(với n chư số 1 và n chữ số 2)