Chứng tỏ rằng
a, 1*3*5*...*99=(51/2)*(52/2)* ... * (100/2)
b, 1-1/2+1/3-1/4+...-1/1990=1/996+1/997+...91/1990
Chứng tỏ rằng:
a) 1.3.5.....99=51/2.52/2....100/2;
b) 1-1/2+1/3-....-1/1990=1/996+1/997+...+1/1990
Chứng minh rằng : 1 - 1/2 + 1/3 - ... - 1/1990 = 1/996 + 1/997 +.....+ 1/1990
cmr 1-\(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.......-\frac{1}{1990}=\frac{1}{996}+\frac{1}{997}+\frac{1}{998}+.......+\frac{1}{1990}\)
Chứng tỏ rằng
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{1990}=\frac{1}{996}+\frac{1}{997}+...+\frac{1}{1990}\)
Giúp mình với nha
Chứng minh:
1-1/2+1/3+1/4+...+1/1990=1/996+1/997+1/1990
Chứng tỏ rằng:
\(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{1990}=\frac{1}{996}+\frac{1}{997}+...+\frac{1}{990}\)
CMR: 1-1/2+1/3-1/4+...+1/1990=1/996+1/997+...+1/1990
CMR: 1-1/2+1/3-1/4+.....-1/1990=1/996+1/997+.....+1/1990