Ta có : S = ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) + .... + ( 3114 + 3115 + 3116 ) + ( 3117 + 3118 + 3119 )
= ( 1 + 3 + 32 ) + ( 33.1 + 33.3 + 33.32 ) + .... + ( 3114.1 + 3114.3 + 3114.32 ) + ( 1.3117 + 3.3117 + 32.3117 )
= ( 1 + 3 + 32 ) + 33(1 + 3 + 32) + .... + 3114(1 + 3 + 32) + 3117( 1 + 3 + 32 )
= 13 + 33.13 + .... + 3114.13 + 3117.13
= 13( 1 + 33 + ... + 3114 + 3117 ) chia hết cho 13
Vậy S chia hết cho 13 ( đpcm )
Ta có : S = ( 1 + 3 + 3 2 ) + ( 3 3 + 3 4 + 3 5 ) + .... + ( 3 114 + 3 115 + 3 116 ) + ( 3 117 + 3 118 + 3 119 )
= ( 1 + 3 + 3 2 ) + ( 3 3 .1 + 3 3 .3 + 3 3 .3 2 ) + .... + ( 3 114 .1 + 3 114 .3 + 3 114 .3 2 ) + ( 1.3 117 + 3.3 117 + 3 2 .3 117 )
= ( 1 + 3 + 3 2 ) + 3 3 (1 + 3 + 3 2 ) + .... + 3 114 (1 + 3 + 3 2 ) + 3 117 ( 1 + 3 + 3 2 )
= 13 + 3 3 .13 + .... + 3 114 .13 + 3 117 .13 = 13( 1 + 3 3 + ... + 3 114 + 3 117 ) chia hết cho 13
Vậy S chia hết cho 13 ( đpcm )