Đặt d = ƯCLN(2x+1;2x+2)
Suy ra 2x +1 ; 2x+2 chia hết cho d. Suy ra 2x +2 - 2x +1 chia hết cho d. Suy ra 1 chia hết cho d. Suy ra ƯCLN(2x+1,2x+2) =1
Vậy 2x+1/2x+2 là phân số tối giản.(đpcm).
Đặt d = ƯCLN(2x+1;2x+2)
Suy ra 2x +1 ; 2x+2 chia hết cho d. Suy ra 2x +2 - 2x +1 chia hết cho d. Suy ra 1 chia hết cho d. Suy ra ƯCLN(2x+1,2x+2) =1
Vậy 2x+1/2x+2 là phân số tối giản.(đpcm).
Chứng tỏ rằng với mọi số nguyên n, các phân số sau là phân số tối giản:
a) \(\dfrac{5n+3}{3n+2}\)
b) \(\dfrac{15n+1}{30n+1}\)
Chứng tỏ rằng phân số \(\dfrac{2n+1}{3n+2}\) là phân số tối giản
Chứng tỏ số \(\dfrac{2n+1}{3n+2}\) là phân số tối giản.
Chứng tỏ rằng \(\dfrac{12n+1}{30n+2}\) là phân số tối giản
cho nϵZ. chứng tỏ phân số tối giản:\(\dfrac{n+7}{n+6}\) \(\dfrac{3n+2}{n+1}\)
Chứng tỏ rằng \(\dfrac{2n+3}{n+1}\) với n ∈ N là phân số tối giản
1) Tìm n thuộc Z để : ( 4n-5 ) chia hết ( 20n-1 )
2) Tìm x,y sao cho : ( 2x +1 ).( y-5 ) = 12
3) Chứng tỏ : 12n+1 / (30n +2) là phân số tối giản
Chứng minh phân số tối giản
A= 3x+2/5x+3
B=2x+3/4x+8
Chứng tỏ rằng với n ∈ N* các phân số sau là tối giản:
\(\dfrac{12}{-6}=\dfrac{x}{5}=\dfrac{-y}{3}=\dfrac{z}{-17}=\dfrac{t}{-9}\)