2! >1.2
3!>2.3
.........
2013!>2012.2013
chắc bạn tự lm nốt đc
tôi tin bạn
đẻ nguyên cái 1/1! nha
ta có 2!>1.2
3!>2.3
...................
2013!>2012.2013
chắc bạn lm nốt đc...tôi tin bạn
2! >1.2
3!>2.3
.........
2013!>2012.2013
chắc bạn tự lm nốt đc
tôi tin bạn
đẻ nguyên cái 1/1! nha
ta có 2!>1.2
3!>2.3
...................
2013!>2012.2013
chắc bạn lm nốt đc...tôi tin bạn
Cho S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{2012}}+\frac{1}{2^{2013}}\) Chứng tỏ S < 1
Cho A=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}+\frac{1}{2013^2}\)
Hãy chứng tỏ rằng A<1
Cho A = \(\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{2012^2}+\frac{1}{2013^2}\) . Hãy chứng tỏ rằng A<1
Chứng tỏ:
a) \(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}>3\)
b) \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)\left(1+\frac{1}{2^4}\right)....\left(1+\frac{1}{2^{50}}\right)< 3\)
c) \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
d) \(\frac{1}{2}-\frac{1}{2^2}+.............+\frac{1}{2^{99}}-\frac{1}{2^{100}}< \frac{1}{3}\)
Chứng tỏ:
a) \(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}>3\)
b) \(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{2^3}\right)\left(1+\frac{1}{2^4}\right)...\left(1+\frac{2}{50}\right)< 3\)
c) \(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)
d) \(\frac{1}{2}-\frac{1}{2^2}+.........+\frac{1}{2^{99}}-\frac{1}{2^{100}}< \frac{1}{3}\)
So sánh P và Q biết : P = 2010/2011 + 2011/2012 + 2012/2013 và Q = 2010+2011+2012/ 2011 +2012+2013
Chứng tỏ N < 1 với N = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}+\frac{1}{2010^2}\)
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right).....\left(\frac{1}{2013^2}-1\right)\left(\frac{1}{2014^2}-1\right)\)
CHỨNG TỎ : A<-1/2
\(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{2013^2}-1\right).\left(\frac{1}{2014^2}-1\right)\)
Hãy chứng tỏ A<-1/2
Bài 1: Cho A= \(\frac{2011}{2012}\)+ \(\frac{2012}{2013};B=\frac{2011+2012}{2012+2013}\)
Bài 2: Cho S= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\)
Hãy so sánh S và \(\frac{1}{2}\)
Bài 3:Chứng tỏ rằng tổng của các phân số sau đây lớn hơn \(\frac{1}{2}\)
S= \(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{98}+\frac{1}{99}\)
Bài 4: Cho tổng A= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ rằng A>1
Bài 5: Chứng tỏ rằng với n thuộc N, n khác 0 thì:
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
Bài 6: Chứng tỏ rằng
D= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}\)<1
Bài 7:
C= \(\frac{1}{2}\frac{1}{14}\frac{1}{35}\frac{1}{65}\frac{1}{104}\frac{1}{152}\)
Các bạn giúp mình nha. Các bạn giải thích cho mình với. Mình không biết làm