\(C=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(C=x^3-2x^2+x-x^2+2x-1-x\left(x^2+2x+1\right)-x^2-2x-1+6x^2-6x+6x-6\)
\(C=x^3-2x^2+x-x^2+2x-1-x\left(x^2+2x+1\right)-x^2-2x-1+6x^2-6\)
\(C=x^3+2x^2+x-8-x\left(x^2+2x+1\right)\)
\(C=x^3+2x^2+x-8-x^3-2x^2-x\)
\(C=-8\left(đpcm\right)\)
C = (x - 1)3 - (x + 1)3 + 6(x + 1)(x - 1)
C = x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1 + 6(x + 1)(x - 1)
C = x3 - 3x2 + 3x - 1 - x3 - 3x2 - 3x - 1 + 6x2 - 6
C = (x3 - x3) + (-3x2 - 3x2 + 6x2) + (3x - 3x) + (-1 - 1 - 6)
C = -8
Vậy: biểu thức không phụ thuộc vào biến
\(C=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(C=x^3-3x^2+3x-1-\left(x^3+3x^2+3x+1\right)+6\left(x^2-1\right)\)
\(C=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6x^2-6\)
\(C=-8\)
Vậy bt trên ko phụ thuộc vào biến.
\(C=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right).\)
\(=\left(x-1-x-1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2\right]\)\(+6\left(x^2-1\right)\)
\(=-2\left(x^2-2x+1+x^2-1+x^2+2x+1\right)+6x^2-6\)
\(=-2\left(x^3-1\right)+6x^2-6=-6x^3+2+6x^2-6=-4\)