Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Yến Hoàng

Chứng tỏ :A=\(\frac{2n+3}{3n+4}\) là phân số tối giản

BAN is VBN
16 tháng 4 2016 lúc 19:40

Gọi d là ƯCLN ( 2n+3 ; 3n+4 )

=> 2n+3 & 3n+4 chia hết cho d ; ( 3 ; 2 ) = 1

=> 3(2n+3) - 2(3n+4) chia hết cho d

=> 6n + 9 - 6n - 8 chia hết cho d

=> 1 chia hết cho d

\(\Rightarrow d\inƯ\left(1\right)=\left\{-1;1\right\}\)

Vì d lớn nhất => d = 1

=> \(\frac{2n+3}{3n+4}\) tối giản             ( ĐPCM )

Thắng Nguyễn
16 tháng 4 2016 lúc 19:33

gọi d là UCLN(2n+3;3n+4)

ta có:

[3(2n+3)]-[2(3n+4)] chia hết d

=>[6n+9]-[6n+8] chia hết d

=>1 chia hết d

=>d=1

=>A tối giản


Các câu hỏi tương tự
Hoàng Nữ Linh Đan
Xem chi tiết
Fairy Tail
Xem chi tiết
sỹ nguyễn
Xem chi tiết
ailafananime
Xem chi tiết
nonever
Xem chi tiết
Lê Thị Nhung Nguyệt
Xem chi tiết
phuong linh
Xem chi tiết
Nguyễn Thị Tố Quyên
Xem chi tiết
Nicky Grimmie
Xem chi tiết