Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mai Văn Ánh

Chứng tỏ A = 10n + 18n - 1 chia hết cho 27 (với n là số tự nhiên)

Trần Quốc Bảo
6 tháng 6 2021 lúc 16:33

Ta có: 10n + 18n - 1 = (10n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n + 18n - 1 chia hết cho 27 (đpcm)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Thùy Dương
Xem chi tiết
Dương Đình Hưởng
Xem chi tiết
masrur
Xem chi tiết
Nguyễn Phương Anh
Xem chi tiết
Ninh Thế Quang Nhật
Xem chi tiết
KieuDucThinh
Xem chi tiết
Học Toán 6
Xem chi tiết
Trần Long Tăng
Xem chi tiết
Nguyễn Na
Xem chi tiết