Gọi \(ƯCLN\left(21n+4;14n+3\right)=d\left(d\inℕ^∗\right)\)
\(\Rightarrow\hept{\begin{cases}21n+4⋮d\\14n+3⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(21n+4\right)⋮d\\3\left(14n+3\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}42n+8⋮d\\42n+9⋮d\end{cases}}\)
\(\Rightarrow42n+9-\left(42n+8\right)⋮d\)
\(\Rightarrow1⋮d.\Rightarrow d\inƯ\left(1\right)=\left\{-1;1\right\}\)
do \(d\inℕ^∗\Rightarrow d=1\)
Vậy \(ƯCLN\left(21n+4;14n+3\right)=1\)hay \(21n+4\)và \(14n+3\)nguyên tố cùng nhau