\(1+7+7^2+...+7^{101}\)
Nhóm các cặp số lại với nhau :
\(\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)=8+7^2\left(1+7\right)+7^4\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(\Leftrightarrow8\cdot\left(1+7^2+7^4+...+7^{100}\right)⋮8\)
D=(1+7)+72=(1+7)+......+7100(1+7)
D=8+72.8+.........+7100.8
D=8(1+72+...+7100) chia hết cho 8
Vậy D chia hết cho 8
\(1+7+7^2+7^3+...+7^{101}\)
\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}-7^{101}\right)\)
\(=8+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2\cdot8+...+7^{100}\cdot8\)
\(=8\left(1+7^2+...+7^{100}\right)⋮8\)
\(\Rightarrow1+7+7^2+7^3+....+7^{101}⋮8\left(đpcm\right)\)