\(\left(x-a\right)\left(x+a\right)\left(x+2a\right)+a^4\)
\(=\left(x^2-a^2\right)\left(x+2a\right)+a^4\)
\(=\left(x^3+2ax^2-a^2x+2a^3\right)+a^4\)
\(\left(x-a\right)\left(x+a\right)\left(x+2a\right)+a^4\)
\(=\left(x^2-a^2\right)\left(x+2a\right)+a^4\)
\(=\left(x^3+2ax^2-a^2x+2a^3\right)+a^4\)
chứng minh x*(x-2)*(x+a)*(x+2a)+a^4 là bình phương của 1 đa thức.
Chứng minh rằng: x.(x-a)(x+a)(x+2a)+a4 là bình phương của một đa thức
chứng minh rằng x(x-a)(x+a)(x+2a)+a4 là bình phương của một đa thức
cho a,b,c là đọ dài ba cạnh của một tam giác . chứng minh rằng: A=4a2b2-(a2+b2-c2)2 > 0
1.Xác định hệ số a ,b để đa thức \(A=x^4-2x^3+3x^2+ax+b\)là bình phương của 1 đa thức
2.CMR biểu thức \(P=x\left(x+a\right)\left(x-a\right)\left(x+2a\right)+a^4\)là bình phương của một đa thức
chứng minh rằng đa thức x^25+x^2+1 chia hết cho x^2+x+1
tìm số nguyên a để a^4-a^3+2a^2 là số chính phương
1. Cho a là số nguyên. Chứng minh M = ( a + 1 ) ( a + 2 ) ( a + 3 ) ( a + 4 ) + 1 là bình phương của một số nguyên
2. Phân tích đa thức thức thành nhân tử :
( x^2 + x + 1 ) ( x^2 + x + 2 ) - 12
Cm x(x-a)(x+a)(x+2a)+a^a là bình phương của một đa thức
1) Xác định a và b để cho P=x^4+2x^3+ax^2+2x+b là bình phương cuả một đa thức
2) Cho x=a+1. Chứng minh rằng: x^16-a^16=(x^8+a^8)(x^2+a^2)(x+a)
4) Cho a+b+c=0. Chứng minh rằng: 2(a^4+b^4+c^4)=(a^2+b^2+c^2)^2
5) Với giá trị nào của a và b thì đa thức:
f(x)=x^4-3x^3+3x^2+ax+b chia hết cho đa thức g(x)=x^2-3x+4. Tìm đa thức thương.
6) Tìm x ; y ; z trong đẳng thức: x^2+4y^2+9z^2+2x+4y+6z+3=0 (pt)
7) Với a ; b ; c là độ dài 3 cạch của một tam giác. Chứng minh rằng biểu thức M=4b^2c^2-(b^2+c^2-a^2)^2>0
8) Chứng minh rằng (a-b) chia hết cho 6 <=> (a^3+b^3) chia hết cho 6
Bài tập 5: Chứng minh -x(m-x)(x+ 2m)(x+m)+m^4 là bình phương của một đa thức