Ta biến đổi tương đương:
a/b + b/a >= 2
<=> (a^2+b^2)/ab >=2
<=> a^2+b^2>=2ab
<=> a^2-2ab+b^2>=0
<=> (a-b)^2 >= 0 (*)
Biểu thức (*) đúng; quá trình biến đổi là tương đương do vậy biểu thức đã được chứng minh.
Chúc bạn học giỏi.
Ta biến đổi tương đương:
a/b + b/a >= 2
<=> (a^2+b^2)/ab >=2
<=> a^2+b^2>=2ab
<=> a^2-2ab+b^2>=0
<=> (a-b)^2 >= 0 (*)
Biểu thức (*) đúng; quá trình biến đổi là tương đương do vậy biểu thức đã được chứng minh.
Chúc bạn học giỏi.
Cho phân số :\(\frac{a}{b}\left(a,b>0\right)\)
CMR: \(\frac{a}{b}+\frac{b}{a}\ge2\)
Bài 1 : Cho a, b \(\in\)N*. Chứng tỏ rằng:
a, \(\frac{a}{b}+\frac{b}{a}\ge2\);
b, \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\).
Bài 2 : Kí hiệu [x, y] là BCNN(x, y).
Cho a, b, c là ba số nguyên tố khác nhau đôi một.
Chứng minh rằng : \(\frac{1}{\left[a,b\right]}+\frac{1}{\left[b,c\right]}+\frac{1}{\left[c,a\right]}\le\frac{1}{3}\).
cho a,b,c,d>0 chứng minh \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{a+d}+\frac{d}{a+b}\ge2\)
Giúp mình với:
1. Cho 2 số nguyên a và b ( b \(\ne\)0 ). Khẳng định nào dưới đây là đúng ?
A. \(\frac{-\left(-a\right)}{-b}=\frac{-a}{-b}\) B. \(\frac{-a}{-b}=\frac{-a}{-\left(-b\right)}\) C. \(\frac{-\left(-a\right)}{-b}=\frac{a}{b}\) D. \(\frac{-\left(-a\right)}{-\left(-b\right)}=\frac{a}{b}\)
2. Cho 2 phân số bằng nhau \(\frac{a}{b}=\frac{c}{d}\) (a,b,c,d \(\varepsilon\)Z; b,d \(\ne\)0). Chứng minh rằng \(\frac{a\pm b}{_{ }b}=\frac{c\pm d}{d}\)
Cho phân số \(\frac{a}{b}\)với a,b >0. Chứng minh rằng:
\(\frac{a}{b}+\frac{b}{a}\ge2\)
Cho \(\frac{a}{b}>0\), chứng minh rằng \(\frac{a}{b}+\frac{b}{a}\ge2\)
cho phân số \(\frac{a}{b}\)\(\left(a,b\in Z,0< a< b\right)\). Chứng minh rằng \(\frac{a}{b}+\frac{b}{a}>2\)
Cho phân số \(\frac{a}{b}>0\), chứng minh rằng \(\frac{a}{b}+\frac{b}{a}\ge2\).
cho \(A=\frac{7}{3}.\frac{37}{3^2}....\frac{6^{2n}+1}{3^{2n}}\)và \(B=\left(1+\frac{1}{3}\right)\left(1+\frac{1}{3^2}\right)...\left(1+\frac{1}{3^{2n}}\right)\)với n thuộc N
a) Chứng minh: 5A-2B là số tự nhiên
b) Chứng minh với mọi số tự nhiên n khác 0 thì 5A-2B chia hết cho 45