Đặt \(A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}\)
=> \(2A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n-1}}\)
=> \(2A-A=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{n-1}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^n}\right)\)
=> \(A=\frac{1}{2}-\frac{1}{2^n}\)
=> \(A=\frac{2^n}{2^n.2}-\frac{2}{2^n.2}=\frac{2^n-2}{2^n.2}=\frac{2^n+\left(-2\right)}{2^n+2^n}\)
Vì -2 < 2n => \(2^n+\left(-2\right)<2^n+2^n\) => \(\frac{2^n+\left(-2\right)}{2^n+2^n}<1\) => \(A<1\)
=> \(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^n}<1\) (đpcm)
Đúng 0
Bình luận (0)