(a - b)2 >= 0 (bình phương của một số luôn >=0)
=> a2 + b2 >= 2ab (dấu = xảy ra khi a = b) (1)
Tương tự:
b2 + c2 >= 2bc (2)
c2 + a2 >= 2ac (3)
Cộng vế với vế của (1),(2),(3) ta có:
2 (a2 + b2 + c2) >= 2 (ab + bc + ca)
(a2 + b2 + c2) >= 2 (ab + bc + ca)
Dấu bằng chỉ khi a = b = c
a^2 + b^2 + c^2 = ab+ ac + bc => 2( a^2 + b^2 + c^2) = 2( ab+ ac + bc)
=> (a-b)^2 + (b-c)^2 + (c-a)^2 =0
vì (a-b)^2>= 0 (b-c)^2 >= 0 ( c-a)^2>=0
=> a-b =0 ; b-c=0; c-a=0 ( dùng dấu ngoặc nhọn nhá)
=> a=b b=c c=a hay a=b=c
a^2 + b^2 + c^2 = ab+ ac + bc => 2( a^2 + b^2 + c^2) = 2( ab+ ac + bc)
=> (a-b)^2 + (b-c)^2 + (c-a)^2 =0
vì (a-b)^2>= 0 (b-c)^2 >= 0 ( c-a)^2>=0
=> a-b =0 ; b-c=0; c-a=0 ( dùng dấu ngoặc nhọn nhá)
=> a=b b=c c=a hay a=b=c