a/Chứng minh rằng \(\frac{2}{\left(2n+1\right)\sqrt{n}+\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b/Áp dụng chứng minh
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{1}{4003\left(\sqrt{2001}+\sqrt{2002}\right)}<\frac{2001}{2003}\)
Chứng minh
a)\(\sqrt{n+1}\sqrt{n}=\frac{1}{\sqrt{n+1}}\)(n\(\in\)N)
b)\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=-\left(\sqrt{a}+\sqrt{a+1}\right)\)
Chứng minh:
\(\frac{1}{2\sqrt{2}+1\sqrt{1}}+\frac{1}{3\sqrt{3}+2\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n+1}+n\sqrt{n}}< 1-\frac{1}{\sqrt{n+1}}\left(n\in N\right)\)
\(N=\left(1-a\right)^2:\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)+1\)
a) rút gọn N
b) Tính N tại a=9
c) Tìm a để /N/=N
a, Cm công thức
\(\forall n\ge1\) ta có \(\frac{2}{\left(2n+1\right)\left(\sqrt{n}-\sqrt{n+1}\right)}< \frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b, áp dụng tính
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{1}{4023\cdot\left(\sqrt{2011}+\sqrt{2012}\right)}< \frac{2011}{2013}\)
1) Chứng minh: \(2\sqrt{n}-3< \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}< 2\sqrt{n}-2\forall n\ge2\)
2) Thu gọn: \(A=5\left(\sqrt{2+\sqrt{3}}+\sqrt{3-\sqrt{5}}-\sqrt{\frac{5}{2}}\right)^2+\left(\sqrt{2-\sqrt{3}}+\sqrt{3+\sqrt{5}}-\sqrt{\frac{3}{2}}\right)^2\)
1,cmr
\(\frac{2\sqrt{mn}}{\sqrt{n}+\sqrt{n}+\sqrt{m+n}}\)=\(\sqrt{m}+\sqrt{n}-\sqrt{m+n}\)
1,rút gọn
a, 3\(\sqrt{27a}+2\sqrt{\frac{a}{3}}+a\sqrt{\frac{4}{3a}}\)
b,\(x^2\sqrt{\frac{12y}{x}}-xy\sqrt{\frac{x}{3y}}\)
c,\(\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)}+\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\frac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}-\sqrt{y}\right)}\)
a, Chứng minh
\(\frac{1}{\left(n+1\right).\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b, Áp dụng
\(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}......+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)
\(N=\left(\frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{ab}}\right):\left(1+\frac{a+b+2ab}{1-ab}\right)\)
1. Rút gọn N
2.Tính N khi \(a=\frac{2}{2-\sqrt{3}}\)
3.Tìm số nguyên a để N có giá trị nguyên