Chứng minh rằng:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\) \(B=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}< \frac{3}{4}\)
Chứng minh rằng:
a. \(\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+\frac{4}{3^5}+...+\frac{99}{3^{100}}+\frac{100}{3^{101}}< \frac{1}{4}\)
b.\(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}< \frac{1}{3}\)
c.\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{1}{16}\)
d. \(\frac{1}{5^2}-\frac{2}{5^3}+\frac{3}{5^4}-\frac{4}{5^5}+...+\frac{99}{5^{100}}-\frac{100}{5^{101}}< \frac{1}{36}\)
\(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+....+\frac{101}{3^{101}}\)
So sánh Avới \(\frac{3}{4}\)
Tính \(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}}\)
Tính \(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{102}}{\frac{101}{1}+\frac{100}{2}+\frac{99}{3}+...+\frac{1}{101}}\)
1) chứng minh: A= 75( 42014 + 42013+ ... + 4 +1 )+ 25 chia hết cho 100
2) cho a,b,c>0. chứng tỏ rằng: \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên
3) Tìm x biết : |x+1/101| + |x+2/101| + |x+3/101|+....+ |x+100/101|=1001x
Chứng minh rằng:
\(H=1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{101^2}>\frac{1}{101}\)
Giải đầy đủ và chi tiết thì mk sẽ tick nhá
Câu hỏi :Chứng minh
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
Chứng minh rằng: \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+....+\frac{1}{200}< \frac{3}{4}\)