Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}-1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
Chứng minh
\(a,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(b,\frac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}\)
\(c,2\sqrt{2}\left(3-\sqrt{2}\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
\(d,\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
\(e,\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
\(f,\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)
Chứng minh
\(a,\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(b,\frac{\sqrt{2}+1}{\sqrt{2}-1}=3+2\sqrt{2}\)
\(c,2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
\(d,\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}=8\)
\(e,\left(3+\sqrt{5}\right)\left(10-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
\(f,\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)
Chứng minh rằng:
\(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)
Chứng minh các đẳng thức sau:
e) \(\left(\dfrac{3}{2}.\sqrt{6}+2.\sqrt{\dfrac{2}{3}}-4.\sqrt{\dfrac{3}{2}}\right).\left(\dfrac{3}{2}.\sqrt{6}+2.\sqrt{\dfrac{2}{3}}+4.\sqrt{\dfrac{3}{2}}\right)=-\sqrt{2}\)
1.Rút gọn rồi tính giá trị của biểu thức:
\(A=3x\sqrt{16-24+9x^2}\)tại x = -3
\(B=5x-\sqrt{4x^2+12x+9}\)tại \(x=-\sqrt{5}\)
2.Chứng minh:
a)\(\left(3+\sqrt{5}\right)\left(3-\sqrt{5}\right)-\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)=3\)
b)\(2\sqrt{3}\left(\sqrt{2}-3\right)+\left(2-\sqrt{3}\right)^2+6\sqrt{5}=5\)
Tính
a, \(\sqrt{75}-\sqrt{5\frac{1}{3}}+\frac{9}{2}\sqrt{2\frac{2}{3}}+2\sqrt{27}\)
b, \(\sqrt{48}+\sqrt{5\frac{1}{3}}+2\sqrt{75}-5\sqrt{1\frac{1}{3}}\)
c, \(\left(\sqrt{15}+2\sqrt{3}\right)^2+12\sqrt{5}\)
d, \(\left(\sqrt{6}+2\right)\left(\sqrt{3}-\sqrt{2}\right)\)
e, \(\left(\sqrt{3}+1\right)^2-2\sqrt{3}+4\)
f, \(\frac{1}{7+4\sqrt{3}}+\frac{1}{7-4\sqrt{3}}\)
Chứng minh
a, \(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
b, \(\sqrt{\sqrt{2}+1}-\sqrt{\sqrt{2}-1}=\sqrt{2\left(\sqrt{2}-1\right)}\)
Tìm GTNN
a, \(A=x-\sqrt{x}\)
b, \(B=\sqrt{x^2-2x+4}+1\)
Chứng minh:
a)\(\sqrt{9-4\sqrt[]{5}}-\sqrt{5}=-2\)
b)\(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
c)\(\frac{\left(x\sqrt{y}+y\sqrt{x}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}=x-y\) VỚI X > 0 VÀ Y >0