`1/4+1/16+1/36+...+1/196`
`= 1/(2^2)+1/(4^2)+1/(6^2)+....+1/(4^2)`
`= 1/(2^2)*( 1/ + 1/( 2^2 ) + 1/(3^2)+.....+1/(7^2))`
Ta có : `1/(2^2)<1/(1*2)=1-1/2`
`1/(3^2)<1/(2*3)=1/2-1/3`
`.....`
`1/(7^2)<1/(6*7)=1/6-1/7`
Do `1/( 2^2 ) + 1/(3^2)+.....+1/(7^2)<1-1/2+1/2-1/3+.....+1/6-1/7=1-1/7<1`
`=> 1/ + 1/( 2^2 ) + 1/(3^2)+.....+1/(7^2)<2`
`=> 1/(2^2)*( 1/ + 1/( 2^2 ) + 1/(3^2)+.....+1/(7^2))<1/2`
`=>1/4+1/16+1/36+...+1/196<1/2`
Vậy `1/4+1/16+1/36+....+1/196<1/2`