Hãy chứng minh:
1/(2.3) + 1/(4.5) + 1/(6.7) + ...+ 1/ (97. 98) +1/(99.100) = 1/51 +1/52 + 1/53 +... +1/99 +1/100
1/2+1/12+1/30+...+1/9120+1/9506+1/9900. / 50-50/51-51/52-...-97/98-98/99-99/100
chứng minh rằng:
1-1/2+1/3-1/4+1/5-1/6+....+1/99-1/100=1/51+1/52+....+1/100
cho A = 1/1*2+1/3*4+...+1/99*100 và B= 2015/51+2015/52+2015/53+...+2015/100. Chứng minh rằng B chia hết cho A
cho A = 1/1*2+1/3*4+...+1/99*100 và B= 2015/51+2015/52+2015/53+...+2015/100. Chứng minh rằng B chia hết cho A
cho A = 1/1*2+1/3*4+...+1/99*100 và B= 2015/51+2015/52+2015/53+...+2015/100. Chứng minh rằng B chia hết cho A
Chứng minh rằng
1- 1/2+ 1/3- 1/4+...+ 1/99- 1/100= 1/51+ 1/52+...+ 1/100= -1/2
CMR :
\(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+\frac{1}{100}\)
cho T = 1/2 + 1/3 + 1/4 +....+ 1/99 + 1/100 và M = 1/99 + 2/98 + 3/97 + ...+ 97/3 + 98/2 +99/1
hãy tìm tỉ số T/M