1/12 + 1/22 + 1/32 + ... + 1/20162 < 1 + 1/1.2 + 1/2.3 + ... + 1/2015.2016
< 1 + 1 - 1/2 + 1/2 - 1/3 + ... + 1/2015 - 1/2016
< 2 - 1/2016 < 2 ( đpcm)
\(\frac{1}{1^2}+\frac{1}{2^2}+....+\frac{1}{2006^2}=\frac{1}{1.1}+\frac{1}{2.2}+.....+\frac{1}{2006.2006}\)
\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2015.2016}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2015}-\frac{1}{2006}\)
\(=2-\frac{1}{2016}< 2\left(đpcm\right)\)