Chứng minh với mọi số nguyên dương n ta có 1/n√n+1 +(n+1)√n = 1/√n +1/√n+1
Chứng minh với mọi số nguyên dương n lẻ, n > 1 ta có \(1+2^n+3^n+...+n^n⋮n^2+n\)
Chứng minh rằng với mọi số nguyên dương n, ta có \(\left(1+\frac{1}{n}\right)^n< 3\)
Chứng minh rằng với mọi số nguyên dương n ta có \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
chứng minh rằng với mọi số nguyên dương n ta có:
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Chứng minh rằng:
a) Với mọi số nguyên dương n ta có \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 1\)
Chứng minh rằng với mọi n là số nguyên dương, ta có:
\(1\le\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{5}{3}\)
Cho số nguyên dương n. Chứng minh rằng với mọi số thực dương x, ta có bất đẳng thức:
\(\frac{x^n\left(x^{x+1}+1\right)}{x^n+1}\le\left(\frac{x+1}{2}\right)^{2n+1}\)
Chứng minh rằng: Với mọi số nguyên dương n ta có \(\frac{1}{2}\)+\(\frac{1}{3\sqrt{2}}\)+...+\(\frac{1}{\left(n+1\right)\sqrt{n}}\)<2